An accurate method for calibrating photoluminescence-based lifetime images on multi-crystalline silicon wafers
نویسندگان
چکیده
We present a method for converting photoluminescence images into carrier lifetime images for siliconwafers with inhomogeneous lifetime distributions, such as multi-crystalline silicon wafers, based on a calibration factor extracted from a separate, homogeneous, mono-crystalline calibration wafer and simple optical modelling of the photoluminescence signal from both the calibrationwafer and the test wafer. The method is applicable to planar wafers with uniform carrier profiles depth-wise. A multi-crystalline wafer is used to demonstrate the difference between the conventional calibration approach, where the photoluminescence signal is calibrated against a quasi-steady-state photoconductance measurement on the test sample itself, and our proposed method. The lifetimes calibrated by our method are consistent, in contrast with the lifetime calibrated by the conventional approach, in which the magnitude and injection-dependence of the lifetime is observed to be sensitive to the choice of reference area. The error in the conventional calibration method mainly originates from measurement artifacts in the quasi-steady-state photoconductance measurements on multi-crystalline wafers, which we propose to be mainly due to minority carrier trapping, radial sensitivity of the quasi-steady-state photoconductance sensor coil and overestimation of the carrier mobility sum. We also show that the proposed new method is effectively insensitive to the lifetime, doping density, reflectance and wafer thickness of the calibration wafer (provided it is below 500 mm). & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence
Imaging the band-to-band photoluminescence of silicon wafers is known to provide rapid and high-resolution images of the carrier lifetime. Here, we show that such photoluminescence images, taken before and after dissociation of iron-boron pairs, allow an accurate image of the interstitial iron concentration across a boron-doped p-type silicon wafer to be generated. Such iron images can be obtai...
متن کاملQuantitative surface recombination imaging of single side processed silicon wafers obtained by photoluminescence modeling
Characterizing the surface recombination of a silicon wafer is commonly performed by measuring the effective lifetime of a symmetrically processed sample and using simplified analytical models to derive a characteristic property of the recombination, such as the surface recombination factor J0s. The most widely used method is based on QSSPC measurements which require large, homogeneously proces...
متن کاملApplications of carrier de-smearing of photoluminescence images on silicon wafers
Lateral carrier diffusion can lead to significant smearing in photoluminescence (PL) images of silicon wafers with high lifetime or localised recombination centres. A method to de-smear the PL image by applying the continuity equation in two dimensions has been proposed previously and demonstrated on a virtual wafer with simulated carrier diffusion and artificial random Gaussian noise. This wor...
متن کاملImaging of the interstitial iron concentration in crystalline silicon by measuring the dissociation rate of iron–boron pairs
Iron is a well-known and detrimental impurity in crystalline silicon (c-Si) for solar cells [1], especially in blockcast multicrystalline silicon (mc-Si). So far, most measurement techniques used to determine the spatial distribution of interstitial iron (Fei) in B-doped silicon wafers are based on measurements of the carrier lifetimes or diffusion lengths before and after iron–boron (FeB) pair...
متن کاملMeasuring dopant concentrations in p-type silicon using iron-acceptor pairing monitored by band-to-band photoluminescence
This paper introduces a photoluminescence-based technique for determining the acceptor concentration in silicon wafers by measuring the formation rate of iron-acceptor pairs. This rate is monitored by bandto-band photoluminescence in low injection, the intensity of which is proportional to the carrier lifetime. The technique is demonstrated with an iron-implanted float zone silicon wafer, heavi...
متن کامل